

EPFL Space Center eSpace

Space
Propulsion
ENG-510

Space Propulsion

ENG-510

Markus Jäger

markus.jager@epfl.ch

m.jaeger.70@web.de

markus.jaeger@airbus.com

majaeger@ethz.ch

+49 170 267 3905 (WhatsApp)

+49 160 95 40 44 57

Lecture # 1 Introduction & General Course Information

Brief information on your lecturer
and the space propulsion course

Biography

Markus Jäger

Biography:

- German (close to Lake of Constance), 54 years, married, 5 children (1 daughter [31 years], 4 sons [26, 24, 22 and 18]), 2 grand children [3 years 4 months and 10 months] living in Bremen, Germany
- Fluent in German, English and French
- Spending time in running, beer brewing and traveling
- Interested in soccer (perhaps a bit more than interested...)

Biography

Markus Jäger

Biography:

- Studies of Aerospace Engineering @ Technical University of Stuttgart + ENSICA Toulouse
- April 1998: Start @ Airbus Defence & Space in Bremen, Germany
- 2013: Working @ Airbus Defence & Space in Les Mureaux, France
- 2014 to 2020: Once again Airbus Defence & Space in Bremen
- January 2021 to April 2022: Working @ ArianeGroup in Lampoldshausen, Germany
- May 2022 to September 2023: Working @ The Exploration Company in Munich, Germany

Biography

Markus Jäger

Biography:

- Since October 2023: Back @ Airbus Defence & Space in Bremen
- Since 2022: Lecture Space Propulsion @ EPFL, Lausanne, Switzerland (now season 4)
- Since 2024: Lecture Space Propulsion @ ETH, Zürich, Switzerland
- Distance studying on Personal & Organization and Business Administration within MBA course

Background & Motivation

Background:

- Propulsion engineer since the beginning in 1998
- Propulsion expert since September 2019 (but not anymore...)
- Chemical propulsion systems and electrical propulsion systems
- Storable propellant and cryogenic propellant
- Toxic and 'greener' propellants
- Engineering and testing
- Development and production
- Aerospace and aeronautics

Background & Motivation

Background:

- NASA and ESA
- Project manager + system engineering and modeling + analysis
- Prime contractor and Sub-contractor
- Global player and start-up
- System integrator and thruster designer

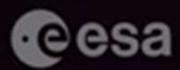
Background & Motivation

Background:

- Projects: EPS Perfo 2000, EPS Versatile, A5ES/ATV, VENUS, WOTAN, TBN Spaceplane, A5ME Upper Stage, Orion ESM, MSR-ERO RIT-2X Thruster, zeroE, Mission Possible, Mission Odysee, Starlab Commercial Space Station
- Business units: Launchers, Orbital Systems, Orbital Propulsion, Exploration (only Space)
- Responsibilities: Propulsion Engineer, System Engineer, Project Manager, Team Leader, Head of Department, Expert, Business Development, R&T + R&D engineer

Background & Motivation

Background:


- International network: Chair of IAF Space Transportation Committee and member of IAF Propulsion Committee + IAF Space Traffic Management Committee
- Advisor to the ASTRAIOS project (Analysis of Skills, Training, Research and Innovation Opportunities in Space)

Background & Motivation

Background:

- Others:
 - Presentation in schools during World Space Week
 - Student internships
 - Student projects (2 @ EPFL during spring semester)
 - Master thesis (1 @ EPFL this year)
 - Organization of department events
 - Participation to reviews
 - Consulting / mentor for young professionals

Background &

Background & Motivation

Motivation:

- Son performed mechatronics university bachelor study @ OHB (4th generation of engineers in our Family) now working for German space start-up Marble Imaging
- «I want to show students how fascinating the world of propulsion is»
- «I want to teach students how the space industry is currently working w.r.t. propulsion systems development and qualification»
- «I want to learn from the students: new ideas, new inspiration, new methods + tools, ...»
- EPFL is a very viewed university with an incredible international set-up as well as diverse team

Space Propulsion Course Outline

Objectives:

- Main objective of the course is to provide an overview of space propulsion systems (and not only thrusters)
- Secondary objective of the course is to describe the basic design principles of propulsion systems

Space Propulsion Course Outline

Objectives:

- At the end of the course, the students will be able to:
 - Analyze propulsion system requirements
 - Plan a project in phases
 - Coordinate tasks between different engineering disciplines
 - Translate system requirements into subsystem requirements
 - Justify propulsion system selection
 - Identify principal propulsion system components
 - Discuss required performance characteristics

Space Propulsion Course Outline

Content:

- **Part 1 – Introduction in Spacecrafts + Mission Design** - Short highlights of spacecraft design including overview on subsystems
- **Part 2 – Introduction in Propulsion Systems** - Brief overview on space propulsion systems considering also:
 - Design Guidelines for Propulsion Systems - Main design principles (basic performance equations) for propulsion systems considering different mission objectives
 - Propulsion System Architecture - Description of propulsion subassemblies needed for the different propulsion systems like pressurization system
 - Propulsion System Components - Description of basic equipment needed for the different propulsion systems like pressure regulator

Space Propulsion Course Outline

Content:

- **Part 3 – Non-classical Propulsion Systems** - Short introduction on non-classical space propulsion systems like solar sails, tethers, ...
- **Part 4 – Future Aspects of Propulsion Systems** - Introduction in future evolution of propulsion systems as well as overview of current investigations on new propulsion systems
- **Part 5 – Special session** - Special session with external TBD guest

Space Propulsion Course Outline

Assessment Method:

- Oral examination (50 %)
- Bi-weekly exercises (25 %)
 - 20 % structure of the paper
 - 30 % consideration of course presentation
 - 50 % content of exercise
- Project group work evaluation (25 %)
 - 20 % Vertical lift-off + flight
 - 20 % Safe core stage landing with parachute
 - 20 % Available launcher performance prediction + below 200 m + flight result
 - 20 % Safe operations on ground
 - 20 % Booster separation

Space Propulsion Course Outline

Bibliography:

- Space Propulsion Analysis and Design (Humble, Henry & Larson, Space Technology Series)
No ebook available, but one print edition is now on order by library
- Rocket and Spacecraft Propulsion (Turner, Martin J. L., Springer)
No ebook available, but one print edition is now on order by library
- Fundamentals of Electric Propulsion: Ion and Hall Thrusters (Dan M. Goebel, I. Katz, Wiley)
Ebook available on BEAST or with this link
<https://ebookcentral.proquest.com/lib/epflch/detail.action?docID=413081> and print edition on order by library

Space Propulsion Course Outline

Communication:

- Contact information:
 - You can contact me by mail or on my mobile phone @ any time
 - My responsiveness will be limited during normal working days (as then main focus is given on my activities @ Airbus DS)
 - I will be present @ EPFL after the courses for discussion / exchanges

Space Propulsion Course Outline

Schedule (as shown on Moodle):

- More or less every 2nd Tuesday starting on 18th of February
 - Course # 1: 18.2.2025 @ 9:15 to 11 am lecture + exercise
 - Project exercise # 1: 25.2.2025 between 9 to 10:30 am
 - Course # 2: 4.3.2025 @ 9:15 to 11 am lecture + exercise
 - Project exercise # 2: 11.3.2025 between 9 to 10:30 am
 - Course # 3: 18.3.2025 @ 9:15 to 11 am lecture + exercise
 - Project exercise # 3: 25.3.2025 between 9 to 10:30 am
 - Course # 4: 1.4.2025 @ 9:15 to 11 am lecture + exercise
 - Course # 5: 8.4.2025 @ 9:15 to 11 am lecture + exercise
 - Project exercise # 4: 15.4.2025 between 9 to 10:30 am

Space Propulsion Course Outline

Schedule (as shown on Moodle):

- More or less every 2nd Tuesday starting on 18th of February
 - Easter break
 - Project exercise # 5: 29.4.2025 between 9 to 10:30 am
 - Course # 6: 6.5.2025 @ 9:15 to 11 am lecture + exercise
 - Trial launch: 13.5.2025 @ 9 am TBC
 - Course # 7: 20.5.2025 @ 9:15 to 11 am lecture (information on oral exam will be given)
 - Launch event: 27.5.2025 @ 9 am TBC
 - Oral exam: 3. + 4.7.2025 TBC

Space Propulsion Course Outline

Logistics:

- Course Material:
 - Handout for each lecture in *.pptx and *.pdf formats
 - Available on Moodle on course day (Actual files from last year will still be modified)
 - No paper hand-out

Space Propulsion Course Outline

Logistics:

- Course will use moodle:
 - Electronic learning environment selected by EPFL
 - <http://moodle.epfl.ch>
 - Principal course materials will be available on the moodle web site
 - Login using your GASPAR username and password
 - Click «all courses»
 - Click «STI»
 - Click «Space Propulsion»
 - <http://moodle.epfl.ch/course/view.php?id=16944>

Space Propulsion Course Outline

Lecture Exercise:

- Ice-breaker
- Mission analysis
- Propulsion system budgets
- Thruster design

Space Propulsion Course Outline

Staff:

- Lecturer – Markus Jäger (markus.jager@epfl.ch)
- Assistant – Florent Gaspoz (florent.gaspoz@epfl.ch)
- Secretary – Candice Norhadian (candice.Norhadian@epfl.ch)

Project Outline

Project Group Work Description:

- The general objective of the project is the practical application of the course content

Project Outline

Project Group Work Description:

- Development of a single stage launcher, i.e. one core stage + two boosters
- Core stage propulsion shall be based on liquid pneumatical propulsion (i.e. Water + GN2 gas pressure)
- Launcher core stage shall have parachute(s) for recovery
- Booster shall be launched with core stage and separated (after propellant run-out) without mandatory safe landing on ground
- Generic launch pad will be defined

Project Outline

Pr

L1 - Introduction

Space Propulsion ENG-510

Project Outline

Project Outline

Project Group Work Description:

- Objectives / Requirements:
 - Vertical lift-off
 - Safe core stage landing with parachute
 - Available launcher performance prediction + maximal orbit altitude shall be below 200 m
 - Safe operations on ground
 - Booster separation

Project Outline

Project Group Set-up:

- 5 Students per Group (as example):
 - Launcher System (Technical coherence, requirement engineering)
 - Core Stage (Propulsion, mechanical engineering) + Functional Analysis (Modeling, performance prediction)
 - Recovery System (Software, electrical engineering, mechanism)
 - Ground System I/F (Interface management, mechanism, certification)
 - Booster Integration + Separation

Project Outline

Project Group Support:

- General objective of the project is the practical application of the theoretical course content
- Bi-weekly exercises will guide through / support project activities
- Assessment feedback on exercises is given on days w/o course (i.e. every 2nd Tuesday) per group (~ 15 min zoom meeting per group)
- Weekly group exchanges are recommended to respect schedule
- Practical fulfilment of requirements is expected
- Generic test bench will be defined + provided
- Interface document will be prepared (final version on March 4)

Project Ou

Project Outline

Exercise Description:

- Exercise # 1 (due date on 23.2.2025): Organize your project
 - 1-pager with description of your project organization in terms of participants + roles
 - Definition of first level of H/W needed
 - Identification of functions to be fulfilled
 - Description of the different mission phases
 - Identification of main requirements and verifications to be performed
 - Preparation of schedule with short description of main tasks
- Evaluation on 25.2.2025

Project Outline

Exercise Description:

- Exercise # 2 (due date on 9.3.2025): Define Ground I/F
 - 1-pager with definition of need w.r.t. Ground Support Equipment I/F
 - How many stages / bottles are used (size of rocket)?
 - Which pressure level is required?
 - Which Water mass is considered?
 - How is the filling with Water planned and when (on the launch pad)?
 - Is there a need for a launch tower?
 - Is a pressure measurement information needed?
 - Which electrical equipment is needed?
 - Specific needs for payload?
- Evaluation on 11.3.2025

Project Outline

Exercise Description:

- Exercise # 3 (due date on 23.3.2025): Performance Analysis
 - 1-pager with the performance analysis of your Water rocket including theoretical description of the equations involved
 - Presentation of analysis results including graphs like altitude over time, speed over time, mass over time, pressure over time
 - Description of payload separation system + performance
- Evaluation on 25.3.2025

Project Outline

Exercise Description:

- Exercise # 4 (due date on 13.4.2025): Verification Plan
 - 1-pager with description how the main requirements will be verified like parachute deployment, safe-landing (maximal speed during landing), maximal altitude below 200 m, vertical lift-off, payload separation
 - Description of verification by test, by analysis, by review of documents or by demonstration during assembly
 - Main focus shall be put on safety, redundancy and parachute deployment
 - It shall be described, how the system can be checked prior to launch of the complete rocket
- Evaluation on 15.4.2025

Project Outline

Exercise Description:

- Exercise # 5 (due date on 27.4.2025): Qualification Review
 - Final report (5 pages) with description of the Water rocket (Description of all products used, fluidical architecture, electrical architecture, mass budget, propellant budget, pressure budget, launch phases, verifications performed)
- Evaluation on 29.4.2025

Project Outline

Exercise Description:

- Exercise # 6 (due date on 13.5.2025): Trial launch
- Evaluation on 20.5.2025 (after lecture)
- Launch event on 27.5.2025

Potential Special Events

Proposals:

- In May:
 - Visit of EPFL rocket team test facility
- In May:
 - External lecturer with highlight lecture
 - Any suggestions / interests based my background?

Student Feedback

What are your expectations?

- Roundtable:
 - Presentation of students (e.g. your experience with propulsion [member of the EPFL rocket team, others ...])
 - Questions on course, project
 - Feedback
 - Main interest w.r.t. space propulsion
 - Expectation from course
 - AoB